Adaptive learning with covariate shift-detection for motor imagery-based brain-computer interface
نویسندگان
چکیده
A common assumption in traditional supervised learning is the similar probability distributionof data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalogram-based brain–computer interfaces (BCIs). In such systems, there is a necessity for continuous monitoring of the process behavior, and tracking the state of the covariate shifts to decide about initiating adaptation in a timely manner. This paper presents a covariate shift-detection and -adaptation methodology, and its application to motor imagery-based BCIs. A covariate shift-detection test based on an exponential weighted moving average model is used to detect the covariate shift in the features extracted from motor imagery-based brain responses. Following the covariate shift-detection test, the Communicated by D. Neagu. B Haider Raza [email protected] Hubert Cecotti [email protected] Yuhua Li [email protected] Girijesh Prasad [email protected] 1 School of Computing and Intelligent Systems, Intelligent Systems Research Centre, Ulster University, Londonderry, UK 2 School of Computing, Science and Engineering, University of Salford, Manchester, UK methodology initiates an adaptation by updating the classifier during the testing/operating phase. The usefulness of the proposed method is evaluated using real-world BCI datasets (i.e. BCI competition IV dataset 2A and 2B). The results show a statistically significant improvement in the classification accuracy of the BCI system over traditional learning and semi-supervised learning methods.
منابع مشابه
A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملOnline Covariate Shift Detection based Adaptive Brain-Computer Interface to Trigger Hand Exoskeleton Feedback for Neuro-Rehabilitation
A major issue in electroencephalogram (EEG) based brain-computer interfaces (BCIs) is the intrinsic nonstationarities in the brain waves, which may degrade the performance of the classifier, while transitioning from calibration to feedback generation phase. The non-stationary nature of the EEG data may cause its input probability distribution to vary over time, which often appear as a covariate...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 20 شماره
صفحات -
تاریخ انتشار 2016